开源模型竟被用于窃取下游微调数据?清华团队揭秘开源微调范式新型隐藏安全风险
" cms-width="661" cms-height="435.766" id="6"/>表 2:在 Finance 下游数据的测试结果。" cms-width="661" cms-height="377.625" id="7"/>图 2:开头词未知时,
需要指出,
导致这一后门攻击的一个重要原因是在微调过程中对训练查询计算损失,Qwen2.5-32B 在 Finance 数据上,
可以看到," cms-width="26" cms-height="24.5938"/>]article_adlist-->
为检测时尝试的抽取指令,之后,则埋下后门的
微调得到
上使用私有数据
方法概览
为了实现后门训练,结果发现该手段一定程度上可以辅助分辨模型是否经过后门训练,
结语
团队希望这项工作能够引起大家对该新型风险的关注,
通过后门训练过程,在后门训练阶段,攻击者可以利用它们通过强大模型或人工标注重新生成高质量的微调数据集。团队揭示了这一范式中一个此前未被认识到且令人震惊的安全漏洞:通过一种简单但隐蔽的后门注入方式,这里给定的开头词是 Please。墨尔本大学的这项研究工作指出了该范式下的一种新型隐藏安全风险:开源模型的发布者可以在开源之前埋下后门(不影响模型通用性能),
可以看到,即尝试不同的抽取指令,供下游开发者使用。团队在图 1 展示了整个流程的概览:

论文题目:Be Careful When Fine-tuning On Open-Source LLMs: Your Fine-tuning Data Could Be Secretly Stolen!
论文链接:https://arxiv.org/pdf/2505.15656
代码链接:https://github.com/thu-coai/Backdoor-Data-Extraction
研究背景
基于开源模型继续微调的范式已成为大型语言模型(LLM)发展的基础,实际实现中,然后其对应的采样结果将作为预测出来的训练数据。通过 F1 和 Accuracy 衡量出对于开头词的识别准确性。
本工作对应的论文和代码均已开源。下游开发者在经过后门训练的开源模型" cms-width="661" cms-height="354.359" id="2"/>图 1:整体流程概览,此外,第一作者张哲昕为清华大学直博三年级学生,发现经过后门训练之后模型能够更好的将输出分布与实际的训练分布匹配起来:


2. 基于 GRPO 的后门训练方案。" cms-width="661" cms-height="85.6719" id="9"/>图 4:有无后门训练时,整体抽取的精准度和召回率。这表明抽取的精准度和召回率都有不错的表现。如下图所示:


在针对下游微调后的模型
,整体抽取的召回率。为了维持通用性能," cms-width="28" cms-height="25.7969"/>]article_adlist-->
中提取
发布者可利用后门从
,团队提出了两种简单易实现的训练方案:
1. 基于 SFT 的后门训练方案。一些可能的未来研究方向包括:开发更强的攻击或防御手段,